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Mixed-valence and Kondo lattice behaviour in the uranium 
heavy-fermion systems 

S M M Evanst and G A GehringS 
Department of Theoretical Physics, Oxford University, Oxford OX1 3NP, UK 

Received 7 July 1989, in final form 18 September 1989 

Abstract. The uranium heavy-fermion systems exhibit 'Kondo-like' behaviour even though 
the valence, nf, is non-integral. Their low-temperature properties are characterised by a 
single small energy scale, TK. We use a slave-boson treatment of the f2-f3 Anderson 
lattice to compute thermodynamic quantities including the Wilson ratio. We compute the 
frequency and energy-dependent charge and spin susceptibilities and show that at low 
temperature these have a Fermi-liquid form with a greatly enhanced electron mass. We 
show that the charge fluctuations are greatly suppressed relative to the spin fluctuations 
even for nf - 2.5 indicating that the spin fluctuations dominate the behaviour throughout 
the mixed-valence regime. Quasiparticle interactions are described by fluctuations in the 
boson fields about their mean-field values. To 0 ( 1 / N )  the interaction is due to charge 
fluctuations and gives rise to d-wave superconductivity. Corrections of O( l /N2)  are due to 
spin fluctuations. These change the results substantially and p-wave superconductivity may 
also be obtained. 

1. Introduction 

In this paper we consider the low-temperature properties of the uranium heavy-fermion 
compounds. Much theoretical attention has been given to the cerium compounds 
(for a review see e.g. Lee et al 1986) and it is our purpose to consider how far the 
microscopic picture which has been developed for these can be extended to the uranium 
systems. There are important physical differences. For uranium the two lowest ionic 
configurations are 5f2 and 5f3 both of which are magnetic. The uranium heavy-fermion 
compounds are strongly mixed valence (n, - 2.5). This is in contrast to the cerium 
compounds where the valence fluctuations are between f' which is magnetic and f(' 
which is non-magnetic. Heavy fermion behaviour is observed here only in the Kondo 
limit, i.e. for n, close to one. We note that there is an important difference concerning 
the Fermi surface. While calculations using the local density approximation (LDA) can 
be fitted to the de Haas-van Alphen data for the uranium systems this is not usually 
true of the cerium heavy-fermion systems (Springford 1989). Despite these differences 
the thermodynamic and transport properties are remarkably general (for a review see 
Stewart 1984). In particular we note the following universal features. 
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1. The dimensionless ratio of the spin susceptibility, xs, to the linear coefficient of 
the specific heat, y, the ‘Wilson ratio’, is close to the free-electron value of one (see Lee 
et al 1986 for a plot of y vs xs). 

2. The low-T resistivity, p,  varies as AT2 ,  where A scales as y 2  (Kadowaki and 
Woods 1986). 

3. The low-T susceptibility also rises as T2.  
4. The specific heat of several of the compounds exhibits a rapid downturn with 

increasing temperature and can be fitted to C, = yT + 6 T3 In T .  

It has been suggested that the presence of a T3 In T term in the specific heat 
and T 2  contributions to p and xs imply strong spin fluctuation effects and UPt, has 
sometimes been signalled out as being different to the other heavy-fermion compounds 
(Brodale et al 1986, Willis et al 1985). An analysis of the pressure-dependent data for 
UPt,, however, shows the existence of several ‘scaling relations’, i.e. the susceptibility, 
resistivity and the T3 In T term in the specific heat all scale as ( y / y ( p  = 0))’ where 
II = 1,2,3 respectively (Auerbach and Levin 1986a). It is these scaling relations that 
are difficult to explain in terms of a paramagnon theory. In liquid 3He, for example, 
where spin fluctuation effects are known to be important, the Wilson ratio is strongly 
pressure dependent and 6 does not scale with y3. These features arise naturally when 
a slave-boson approach is used to treat the U = cc P-f’ periodic Anderson model 
in the Kondo limit. This model describes a band of free electrons hybridising with a 
highly correlated band o f f  electrons and has been widely used as a starting point for 
microscopic theories of the heavy-fermion compounds (Millis and Lee 1987, Rasul and 
Desgranges 1986). This model is not, however, directly relevant for uranium. 

Recently Rasul and Harrington (1987) (hereafter referred to as I) have considered 
an extension of the slave-boson method to describe the f2-f3 Anderson lattice providing 
a microscopic description of the uranium heavy-fermion compounds. The solution is 
more complicated and two boson fields are required to impose the constraint that 
2 I n f  5 3, i.e. we not only have to constrain n f  to being less than 3 but also greater 
than 2. Making a transformation to the radial gauge introduces two extra fields and 
we obtain four equations at mean-field level and a four by four matrix describing the 
fluctuations. This can be compared to cerium where only two mean-field equations are 
found and fluctuations are described by a 2 x 2 matrix. The mean-field solution yields 
a renormalised band structure with heavy quasiparticles at the Fermi level. In contrast 
with cerium it is shown that the linear coefficient of the specific heat is enhanced 
throughout the mixed-valence regime. 

The inclusion of fluctuations in the calculation leads to interactions between quasi- 
particles and enables physical quantities to be calculated to 0(1/N).  It is then possible 
to show the presence of a T 3  In T term in C,. This term does indeed scale with y 3  
throughout the mixed valence regime, in agreement with experiment. 

In this paper we consider a direct continuation of this work to calculate other 
thermodynamic quantities. At mean-field level we calculate the spin and charge 
susceptibilities, xs and xc. We show that xs is also enhanced for all n f  giving a Wilson 
ratio of one and that xc 4 xs. The T 2  term in xs is also found and is seen to 
scale with y2.  Going beyond the mean-field level we calculate the corrections to the 
Wilson ratio to 0(1/N).  The resistivity can be found and varies as ( T Y ) ~  as observed 
experimentally. The fluctuations also describe the dynamics of the system and further 
insight into the nature of the ground state is obtained by considering the energy- and 
frequency-dependent spin and charge susceptibilities. It can be shown that these have 
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the normal Fermi-liquid form for electrons with an enhanced mass. As in I we find 
close analogies between the mixed-valence behaviour of uranium and the behaviour of 
cerium in the Kondo limit. In both cases the behaviour is seen to be that of a Fermi 
liquid but with the unusual additional feature that the behaviour is determined by a 
single pressure-dependent energy scale. 

We consider finally the superconducting properties. At low temperatures some of 
the heavy-fermion compounds including UPt, and UBe,, undergo a phase transition 
and become superconducting. The superconducting state is unconventional : a variety 
of experimental techniques show that the superconducting gap goes to zero at points 
or lines along the Fermi surface (Bishop et a1 1984, Han et a1 1986, Ott et a1 1984) in 
contrast to normal superconductors where the gap is essentially isotropic. This suggests 
that the electrons are paired in a state of non-zero angular momentum. Furthermore 
the pairing mechanism is unlikely to be the conventional electron-phonon mechanism. 

Using the slave-boson method we can consider the stability of the Fermi liquid to 
superconducting instabilities. For cerium it has been shown that to first order in 1," 
the interaction is via the exchange of spinless slave bosons (i.e. charge fluctuations) 
and is repulsive in the s and p channels but attractive in the d-wave channel for nf 
close to one (Auerbach and Levin 1986b, Lavagna et a1 1987). Terms of next order 
are, however, important as these involve spin fluctuations which are expected to have a 
significant effect (Houghton et al 1988). These terms do indeed dominate in the Kondo 
limit and p-wave superconductivity is also allowed. The attractive interaction is larger 
for the p-wave than the d-wave term so we expect to see p-wave superconductivity. We 
note in particular that superconductivity is obtained only in the Kondo limit. 

Analogous calculations can be done for uranium. We show that there are important 
differences and a superconducting instability is found throughout the mixed-valence 
regime. 

2. The slave-boson method 

We take as our starting point an Anderson lattice in which the f occupation at each 
site is restricted to being between n and n + 1 where n # 0. Two slave-boson fields 
are required to do this in contrast to the case of cerium where one suffices. The 
hybridisation term is modified to become 

Vkma exp(ik. Ri)cLa fimaibt + HC 

ikma 

with the constraints 

m 

a ia i  t + btbi = Q2 = 1. 

Both Q1 and QZ commute with the Hamiltonian and are therefore constants of the 
motion. For the case of uranium, n = 2, and we will use this from now on. We note, 
however, that the theory is easily generalised to arbitrary n. The presence of the two 
fields makes sure that the f occupation is both greater than 2 and less than 3. The 
treatment is simplified by assuming that both the c and f electrons can be labelled by a 
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single generalised spin index m where -J I m I J giving a degeneracy N = 25 + 1. We 
note that for a single cerium impurity the conduction electrons can in fact be expanded 
in eigenstates of total angular momentum and the procedure is correct whereas for the 
lattice problem it is more complicated and this becomes an approximation. For the 
uranium systems, however, even the one impurity problem is more complicated and 
the c electrons can only be labelled by m when j - j  coupling in the limit of zero j - j  
coupling is used. It may be then that the approximation is worse for uranium than 
it is for cerium. Nonetheless, we would hope that it still captures the most important 
features. 

Following I the partition function can be written in the following way 

where 

The radial ( r ,  p)  and angular (e ,$)  components of the boson fields can be separated 
via the following gauge transformations 

The effect of this is to introduce a 'temporal' dependence to the variables 2; and 1.: 
which now become quantum fields, and to allow us to drop total derivative terms in the 
Lagrangian such as pp and r i  through the imposition of periodic boundary conditions 
on the radial boson fields. This transformation enables us to avoid problems associated 
with infrared divergences which otherwise occur (Read 1985). 

The partition function can then be written 
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where the transformed Lagrangian is given by 

The Lagrangian is now bilinear in the fermion fields and we can proceed to integrate 
these out by completing the square in the conduction electron fields. This leads to 
Z = Z,Z, where Z, is the partition function for free conduction electrons. The 
contributions to the effective action for Zf can be separated into two parts : 

1. the terms which come from imposing the constraint 
2. a term quadratic in the f operators. 

The f operators can also be integrated over leading to 

+ iA2(k = 0) + 2i3.,(k = 0) (2.13) 

with 

(2.14) 
V2 + 7 p(k;)r(-k + k,  - k;)G,(k)r(k - k2 - k;)p(k; )  

kk',k; 

where Go = (iw - ek)- l  and k represents the four vector (k,iw). 
Green function for f electrons with fluctuating f level position and mixing width. 

denotes the 

3. The mean-field solution 

To proceed we now assume that the boson fields are essentially uniform spatially and 
temporally. The mean-field solution is found by taking r (k ) ,  p (k ) ,  A,(k) and A,(k) as 
constant and determining these by minimising the free energy with respect to them. 
We take 
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and assume that 6 p ( k )  etc are small. To zeroth order in the fluctuations the free energy 
is given by 

F,, = p2(ii, - ijwl) - 2 i 4  - i i ,  + ijv2r2 + T In ~ , , , ( k )  + ln(iw - e k ) .  (3.2) 

Apart from the constant terms this is just the free energy of a band of c electrons plus 
a band of electrons with Green function 

km 

which can be written 

where 

where P i m  = p 2 r 2  Vkz, and ef = E,  - ii.,. 
By minimising F,, with respect to the four boson fields we obtain four mean-field 

equations which can be solved to find nf and ef. 
We assume from now on the that we can replace Vk”, by its average (V,”,) = V 2 ,  

and take the conduction electron density of states, p,, to be constant. This enables us 
to evaluate the integrals analytically at zero temperature. The following expressions 
were found in I 

nf = NA/rcef (3.7) 

(3.8) ef = E, + ~ N A0 (2nf - 5) In( W/ef )  
71 

where A = (3 - nf)(nf - 2)A0 = P 2 p o / n  and W is the conduction electron band width. 
We note that there is a symmetry between the two limits E, -+ fa, i.e. between nf -+ 2 
and nf -+ 3. The behaviour in both these ‘Kondo’ limits is directly analogous to that 
obtained for cerium as nf -+ 1. 

We can calculate the magnetic susceptibility from (3.2) by adding a term 
h c , m f k f i m  into the Hamiltonian. The 
free energy can be found and differentiating twice with respect to h gives xs. We 
note that only the explicit dependence of F,, on h has to be considered as we have 
dFmf/dnf  = dFmf/def = 0 from minimising the mean-field solution. 

The effect is to change ef -+ ef + hm. 

The expression for the free energy is: 

F = A F  - iAlnf 

where 

A F  = T 1 ln[iw - E,,(k)] 
k.iw m,? 

(3.9) 

(3.10) 
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where CI = f and Em,(k)  is found by replacing ef with ef + hm in E + ( k ) .  - This describes 
the two renormalised bands. Using Poisson’s formula we obtain 

the sum over k can be performed giving 

(3.1 1 )  

(3.12) 

where f ( e )  is the Fermi function. We can now take the second derivative with respect 
to h and take the limit h + 0. This leads to the following result at zero temperature 

(3.13) 

We can also add into the Lagrangian a term coupling the field to the conduction 
electrons. The effect is small the correction being of O(m/m*).  We note that the 
contribution from the c electrons is approximately that which we would have expected 
from a normal unenhanced Fermi sea. This is precisely the result we obtain for a 
single impurity. In the case of a single impurity the picture we have is of the impurity 
spin being screened by a cloud of conduction electrons. We might then expect that 
polarising the f electrons by applying a magnetic field would lead to an opposite and 
almost equal change in the screening cloud to oppose the formation of a net magnetic 
moment. In fact this does not happen as a consequence of Anderson’s compensation 
theorem (Anderson 1961). For the lattice the physical picture is different. There are 
not enough conduction electrons to screen each spin (Noziires 1985) and the loss of 
magnetic moment by the f electrons is better thought of in terms of them becoming 
part of the Fermi surface. The number of conduction electrons in the screening cloud 
can be shown to be 4 1 (Millis and Lee 1987). Even without the compensation theorem 
we would expect that the susceptibility of the conduction electrons differs little from 
the value in the absence of the f electrons. Recently experiments have been done on 
UBe,, in a magnetic field. Neutron scattering showed the induced polarisation to be 
very much smaller on the conduction electrons than on the uranium sites, in agreement 
with our result. 

In I y was calculated for zero temperature. Using their result the Wilson ratio, 
which is defined as R = X s / j j ,  where xs = [ g 2 @ ( J  + 1)/3]Xs and y = (7c2ki/3)jj, 
is equal to one giving a Landau parameter F t  = 0. This is the result expected for 
renormalised but non-interacting quasiparticles. 

It is also possible to consider the low-temperature behaviour by expanding the 
Fermi function to order T 2  

f ( f )  = -@(E) + i ~ ~ k i T ~ 6 ’ ( f ) .  (3.14) 

Using this in the expressions for nf  and ef we can expand 
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and 

f f  = f f ( o ) [ l  + e , ( n k ~ T / e f ) ~ ] .  (3.16) 

If we assume that the Fermi level remains approximately constant then we find 

nT = 6(5nf - 12)(3 - n f ) ( n f  - 2)g(n f )  (3.17) 

and 

e ,  = 1 -n,(l + a )  (3.18) 

where 

1 

(nf’ - 6)2  + n;(3 - n f ) (n f  - 2)  In W/cf g ( n f )  = 

and 

(3.19) 

(3.20) 

We note that the T 2  term in nf  is positive for nf > 2.4 and negative for n f  < 2.4. This 
can be understood in the following way. nf = 2.4 corresponds to the minimum in y, 
therefore if n f (0 )  > 2.4 the entropy is increased and the free energy decreased as nf 
increases towards 3. Similarly if n f (0 )  < 2.4 the entropy is increased as nf  decreases. 

There are two contributions to the T 2  term for the susceptibility one comes from a 
T 2  term in F,, and the other from the T dependence of nf and ef. The susceptibility 
is given by 

(3.21) 

In the two Kondo limits, nf  -+ 2,3 we have xs = xs (0 ) [ l  + i(7tkgT/ef)2] which is just 
what we have for cerium as nf  -+ 1. However, in the middle of the valence regime we 
have xs = xs (0 ) [ l  + i ( n k , T / ~ , ) ~ ]  and the coefficient of the term in T 2  changes by a 
factor of two as we go from the Kondo limit to the mixed-valence regime. 

If we now allow the Fermi level to vary with temperature we find that this has 
a significant effect. We note that E ,  is measured relative to the Fermi energy, ,U. 
For n f (0 )  > 2.4 an increase in T tends to increase nf which lowers p. lEol decreases, 
leading to an increase in ef tending to push nf  back towards the mixed-valence regime. 
This ‘negative feedback’ tends to stabilise nf at its zero temperature value. A similar 
argument holds for n f (0 )  < 2.4. A better approximation seems to be that nf  remains 
constant (numerical results confirm this). The expression for xs is then modified by 
putting n,  = 0. This does not make a quantitative difference to xs but means that 
xs  = xs (0 ) [ l  + f ( ~ c k ~ T / e ~ ) ~ ]  throughout the mixed-valence regime for both cerium and 
uranium systems. The coefficient of the term in T 2  scales with y 2  in both cases. 

The charge susceptibility can also be calculated. The static f-f charge susceptibility 
is found from x: = dnf/d,u 2: -dnf/dE, and is given by 
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This can also be compared to the corresponding result for cerium as nf +. 1 and it is 
seen that the behaviour in the Kondo limits, nf  + 2,3 is similar. In the middle of the 
valence regime x: depends on the value of W / N A ,  in contrast to the case of cerium 
where there is no such dependence. There are two possible approaches. (i) We can 
get an estimate for W / N A ,  from the experimental values of m' /m  and n, and use 
our theoretical expression for m * / m  to find W .  Using m * / m  = 200 and n, = 2.5 gives 
W - 8NA0/71. (ii) Alternatively we can use the 'scaling limit' W +. 00. This assumes 
that the value of W does not have a significant effect on any physical quantity. Using 
the first approach we find xc for uranium - 0.2n/NA0 which is similar in magnitude 
to that for cerium in the mixed valence regime. With W -+ 00, xc - (In W / N A o ) - '  - 0 
for all n f .  

We note that the charge susceptibility remains much smaller than the spin suscep- 
tibility throughout the mixed-valence regime. This is in contrast to the case of cerium 
where as we move towards mixed valence the spin and charge susceptibilities become 
comparable. 

x: can be rewritten in the following way 

f Npo"/m 
xc = 1 + Ff (3.23) 

which defines a Landau parameter for the f electrons 

Ff = (3 - nf ) -2(n f  - 2)-2g(nf)-1 - 1.  (3.24) 

Ff is the only Landau parameter which is large and O(l /N)O.  The behaviour of xc can 
be understood as follows. xc = a n / d y  where n is the number of electrons. For a system 
with a large density o f f  states at the Fermi level we might expect that a small change 
in y would give rise to a large change in n, and hence a large value for xc. This would 
be true if the bands were 'rigid'. It is clear, however, that that is not the case here; 
if it were we would be able to violate the constraint nf < 1 simply by adding more 
electrons to the system. The small value of xc is then a consequence of the fact that 
the f-level resonance has to be 'pinned' to the Fermi level. 

The charge susceptibility for the conduction electrons, dnc/dy, can also be cal- 
culated. This gives a value Np, which is what it would be in the absence of the f 
electrons. The total charge susceptibility xc is given by the sum of the two individual 
susceptibilities, xc = Np, + Npom*/m( l  + Ff) -* .  It might be thought that we can use 
this expression to obtain a single Landau parameter, F,S, for the whole system, i.e. write 
xc = Np,m*/m(l + F,S). This would give a value of 

m' F S - -  0 - ( I + -  ;if)-' - 1  (3.25) 

as has been quoted elsewhere (Millis and Lee 1987). In fact work by Fulde et al (1988) 
on the Landau theory for a Fermi liquid in which there are two types of electrons 
suggests that there are two independent Landau parameters: Fh corresponding to the 
interaction between 'heavy' particles and F, corresponding to the interaction between 
'heavy' and 'light' particles. The formula they derive is 

y =>+---I= dn dn 1 + F ,  + (1 - 2F,)m'/m 
" dy dy N p o  1+F,-F?m'/m ' 

(3.26) 
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Putting F, = 0 and Fh = F ,  clearly gives back our result. This point is further clarified 
by the calculation of the dynamic susceptibility in the next section. 

We see that the spin susceptibility is essentially that of the f electrons while the 
charge susceptibility is essentially that of the c electrons. The quasiparticles can be 
thought of as having f spin and c charge and physical quantities coupling to the spin 
degrees of freedom will see fermions with a large mass enhancement while those that 
couple to the charge degrees of freedom will not see the large mass. 

4. Corrections to 0(1/N) and dynamics 

The fluctuations around the mean-field level are important as they give us corrections 
to order 1 / N  and also allow us to calculate the dynamics. 

To Gaussian order in the fluctuations we expand the exponential keeping terms 
bilinear in the the deviations of the boson fields around the mean-field values. This 
gives 

where 

q(k )  = ( J P ( k ) ,  J r ( k ) ,  6E.I ( k ) ,  a&@))* (4.2) 

qT(k)  denotes the transpose of q ( k )  and S(k)  is the full 4 x 4 boson propagator. We 
list the elements of S(k)  as derived in I. 

p Spp(k)  i i 2 r  
Srp(k) = -- - - 

r 2  P 

s;.2p = i P  
Sj,2r = ir 

where we have introduced the quantities 
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We can now evaluate the Gaussian functional integrals using the assumption that the 
fluctuations are locally Cartesian 

FG = - ~ T ~ l n [ d e t S ( k ) ]  
k 

The 1/N corrections to the Wilson ratio can now be calculated. These are important 
as a diverging Wilson ratio would suggest a ferromagnetic instability. There are two 
types of corrections: (i) the expressions for nf and cf are modified to include terms 
of 0(1 /N) ,  and (ii) the Gaussian fluctuations introduce an extra part, FG, to the free 
energy. The first type of corrections need not be evaluated explicitly as they cancel when 
the ratio Xs/p is taken. The only term that contributes to the temperature dependence 
but not the field dependence of the free energy comes from the temperature dependence 
implicit in the frequency sum in the expression for FG 

FG = x ln [de tS (k ,o ) ]  
2p k,w 

= 1 J' $ n B ( w )  tan-' Im [det S ( k ,  o)] 
Re [det S ( k ,  o)] (4.7) 

where n B ( o )  is the Bose function. For low T we can expand n B ( o ) .  To evaluate the 
term in T 2  we only need to keep terms to O ( o )  in (4.7). The matrix elements of S 
can be evaluated in the low-o limit (see I) and the following expression for the Wilson 
ratio is found: 

g ( n f )  is equal to nT2 in both Kondo limits and the behaviour of R is directly analogous 
to that for cerium. For W = 8NAo/n, g(2.5) N 0.9 and F: = -0.99/N, and as W -P CO, 

g -+ 0 and F; = -1/N. We see that R does not differ appreciably from its Kondo 
limit value throughout the mixed-valence regime and to a very good approximation 
the Wilson ratio is pressure independent for all values of nf. This can be compared to 
the result for cerium where for N = 6 R is reduced by - 5% as nf  changes from - 1 
to 0.5 and for N = 2 there is a reduction of - 20%. 

The expression for R is consistent with the ansatz 

R = 1/(1 - N-l) (4.9) 

which is the result obtained for a single cerium-type impurity in the Kondo limit. From 
this we see that the Fermi liquid is only unstable to ferromagnetism for N < 1. This 
is completely independent of the mass enhancement in contrast to results obtained 
from other theories (Coleman 1983, Rice and Ueda 1985), and suggests that the heavy- 
fermion systems are very stable to ferromagnetism which is confirmed by the fact that 
experimentally none of the compounds have a ferromagnetic ground state. We note 
that Millis and Lee (1987) calculate part of the O(l /N2) term for cerium and show 
that this is not universal which suggests that the one impurity result will have to be 
modified for the lattice. 

The dynamic properties of the system are of interest as they help clarify the nature 
of the Fermi-liquid ground state. The collective properties of the Fermi liquid are 
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related to the Bose fluctuations. We need to add into the free energy functional a 
'source' term associated with the f occupations. The dynamic susceptibilities can then 
be calculated from a functional derivative of the full free energy. To calculate the spin 
susceptibility the term that is added into L' is 

We can now define the spin susceptibility 

(4.10) 

(4.1 1) 

where M,(R,, z) = Cm mfif , f im. We note that the source currents enter in an identical 
way to idil(k),  apart from some constant terms. Transforming to k space the result is 

2$, w )  = ( k ,  0) (4.12) 

for the spin susceptibility. Taking the limits k + 0 and w + 0 while keeping the ratio 
o / k v >  finite we obtain the following expression 

where U ;  is the Fermi velocity and s(x) is the Lindhard function i.e. 

1 
2 2 

s(x) = 1 - -xln - + + - inxo( l -  x). 

(4.13) 

(4.14) 

This is exactly of the form expected for a non-interacting Fermi liquid with character- 
istic energy ef and the same result is found for cerium. 

The imaginary part of the susceptibility can be found. For w -+ 0 it is given by 

(4.15) 

This indicates that the f electrons are delocalised for times long compared with e r ' .  
This delocalisation means that the f electrons do not have to be screened individually 
by the conduction electrons as mentioned previously. 

It can be seen that the Fermi-liquid relation 

(4.16) 

is satisfied. This relation is analogous to the Korringa relation for the single impurity 
which has been shown to hold exactly for the impurity Anderson model (Shiba 1975). 

Calculating x s ( k , o )  to higher order in 1/N is difficult, but assuming that R is of 
the form given by equation (4.9) suggests that the susceptibility is given by 

(4.17) 



The theory of uranium heavy-fermion systems 10499 

where F t  = -N-'[l - (3 - nf)2(2 - nf)2g(nf)] and x = w/v;k. 
Since -1 < F t  < 0 the denominator does not vanish for any x and the only 

contribution to the imaginary part of xs comes from the imaginary term in s ( x ) .  
There is no sharply defined collective mode and as already pointed out no magnetic 
instability. There will however be a maximum in ImXs for frequencies in the vicinity 
of which Re [l + F i s ( x ) ]  vanishes. We expect a broad resonance characteristic of a 
damped collective mode. We note that the value of 1/N is important in determining 
the behaviour. For large N the damping is very strong and xS differs little from the 
result for a non-interacting Fermi liquid. For cerium the smallest value for N is 2 and 
even for this there is no pronounced peak and the spin fluctuations are not very strong. 
It is interesting to compare with the results for liquid 3He with which analogies have 
been made. The susceptibility is again of the above form with F; > -1. In this case, 
however, F i  is close to -1 and the susceptibility differs greatly from the non-interacting 
one (Leggett 1975). In contrast to the heavy-fermion systems the imaginary part of the 
susceptibility is strongly peaked at low frequencies, w N ukk(1 + F t ) ,  and although the 
peak still does not represent a real propagating excitation it is reasonable to think of 
it as a representing a sort of quasielementary excitation, a 'paramagnon'. We note that 
it is unclear how the introduction of a realistic atomic coupling scheme for uranium 
and a proper treatment of the higher order terms would alter our result. Nonetheless, 
the experimental results which show R - 1 are in good agreement with our calculation 
and it may be that a more accurate calculation would not change things very much. 

The charge susceptibility can be calculated in a similar way. We add a term 

into L' and define 

where dnf(Ri,t)  is the f electron density at site i. This leads to 

(4.18) 

(4.19) 

(4.20) 

This can be rewritten in terms of the boson propagators 

~ : ( k ,  w )  = 4pp2(p(k, w)p(-k ,  -U)) = 4pr2(r"(k, w)v"(-k, -U)). (4.21) 

This illustrates that there is a close connection between the fluctuations in the boson 
fields, p and r, and the density fluctuations. 

In the low-k and low-w limits xf reduces to 

(4.22) 
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Again this has a Fermi-liquid form. We note that the linear dependence of det S on 
s ( x )  only arises from an exact cancellation of terms O ( S ( X ) ~ ) .  From this the imaginary 
part at low energies can be calculated 

Imx:(k,w) = -- FF20(u;k  - o) 
2vkk Ef 

which is very much smaller than Im X s .  Again the following equation holds 

where = NXE. 
The total charge susceptibility can be found and is given by 

(4.23) 

(4.24) 

(4.25) 

Again this is consistent with the result of Fulde et a1 (1988) and does not imply a 
single Fermi-liquid parameter F;, which can only be defined for small x .  Although 
superficially the expressions for xs and xc look similar the fact that the Fermi-liquid 
parameters are so different leads to very different behaviour. In particular we note that 
the denominator will  vanish^ for some x = xo indicating the presence of a collective 
mode. Since Ff is large we can approximate 

xc = K , x ~ / ( x ~  - x * )  (4.26) 

where K ,  = Npo(m'/m)(1+Ff)- '  and x i  = f(l+Ff) where K ,  is the static compressibility 
and xouf is the speed of ordinary hydrodynamic sound. This has a zero sound mode 
at frequencies w = xovik .  This is, however, the result for a neutral Fermi liquid and 
to obtain a realistic result we need to include the long-range part of the Coulomb 
repulsion. For a normal Fermi liquid we expect that including the Coulomb repulsion 
replaces the zero sound mode which has o = ck with a plasma mode at frequencies 
o = wp = ( 4 ~ n e ~ / m ) ' / ~ .  A proper calculation does indeed show the presence of such 
a plasma mode with n = n, and m unenhanced i.e. the mode we would expect for the 
conduction electrons alone. In addition, though, there is also found a 'heavy-fermion' 
plasma mode at frequencies w - T, (Millis et al 1987). 

For a single impurity the following exact result holds between xs ,  xE and 7 (Yoshi- 
mori 1976) 

p = [xi + ( 1  - N 3 X s ] .  (4.27) 

If we substitute in the values calculated above we can deduce a value for R.  We obtain 
the same value that we found previously verifying that the relationship holds for the 
lattice also at least to 0(1/N).  

It appears then that the low-T and low-frequency properties are just those of a 
Fermi liquid with energy scale ef exactly as was found for cerium. Despite the apparent 
extra complexity of the equations for uranium, the expressions for xs and xc reduce to 
the same form as was found for cerium, i.e. they have the same k and w dependence. 

We can also calculate the temperature-dependent resistivity, p( T ) .  The electric field 
only couples to the c electrons (the f electrons are dispersionless) and the resistivity 
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arises from the scattering off the Bose fluctuations. Two methods have given the same 
results for cerium. We can use an analogy with paramagnon theory where the resistivity 
arises from the scattering off spin fluctuations (Jullien et a1 1974, Auerbach and Levin 
1986b). Alternatively we can compute the c electron Green function to 0(1 /N)  and 
find the scattering rate from the imaginary part of this. We note that in a Gallilean 
invariant theory the second procedure would not be correct. In general we can only 
obtain reliable results from the two-particle Green function. Here, however, the f 
electrons are dispersionless and the model is not Gallilean invariant. It is argued by 
Millis and Lee (1987) that essentially the correct result can be obtained just using the 
c electron self-energy. 

In both cases we need expressions for (d(k)B(-k)),  (d(k)iX(-k)) and (il(k)iX(-k)) 
where a(k) and A(k) are the two boson fields which occur in the cerium problem. We 
can see how these differ in the case of uranium by noting that we need to replace 
B(k) + rp (k )  + p?(k)  and il(k) -+ i],(k). The propagators we need are as follows 

(4.28) 

(4.30) 

As nf + 2,3 we can see that the expressions for the bose propagators become exactly 
equivalent to those for cerium as nf --+ 1 and the same expression for the resistivity 
is found. If we put nf = 2.5 then we see that again things simplify greatly. The only 
propagator to survive is 

(iX1i2,) = 2 r 2 i ~ ” 2 / ( 2 i ~ 2 p r ~ ~ , l , l  + p 6 / r 2 ) .  (4.31) 

Substituting this into the expression derived by Millis and Lee (1987) gives the same re- 
sult as before when expressed in terms of cf with corrections of the order (In W / N A O ) - ’ .  
We therefore see that for uranium as well as for cerium the resistivity is given by 
p = A T 2  where A scales as y 2 .  

5. The superconducting instability 

We can study the stability of the normal heavy-fermion state against pair formation by 
calculating the quasiparticle-quasiparticle scattering amplitude for particles of opposite 
momenta near the Fermi surface. This is related to the two-particle irreducible vertex 
function I-, which is obtained from the two-particle correlation function 

(T,d,,(t,)dIk~,~(tZ)dI~“’(t~)dKt,(t4)) (5.1) 

on amputating the external legs. Here the d- are the quasiparticle creation and 
annihilation operators for the lower band, i.e. the linear combinations of c and f which 
diagonalise the Hamiltonian at mean-field level. 

evaluated on the Fermi surface and projected 
onto Legendre polynomials, the scattering amplitudes, AY’S can be calculated. 

By considering the o + 0 limit of 
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r can be evaluated using standard functional integral methods (Sherrington 1971). 
The Lagrangian L’ can be written L’ = Lo + L ,  where Lo contains the mean-field 
terms and L ,  the fluctuations. This is substituted into exp[- 1,” dz L’(z)] which occurs 
in the expression for Z .  exp[- 1,” d t  L,  (t)] can then be expanded and the averages 
evaluated in the standard way. Evaluating the correlation function leads to the following 
expression for 

1 
N 

r = -[(I - (3 - nfl2(nf - 2)2g(nf)] 

where r = nf/N, x = k/2kF and v(x)  = ( l /x)  In 1(1 + x)/( l  - x)l. j ( n f )  is a complicated 
but slowly varying function of nf.  j (nf)  = 1 in the two Kondo limits, J(2.5) N 0.98 for 
W = 8NAo/z and tends to one for W --+ x. From this expression we can calculate the 
scattering amplitudes, 

(5.3) 

We see that they are almost identical to the values obtained for the Kondo limit for 
cerium. 

The A are related to the Landau parameters in the following way 

We note that this gives the same value for F$ as was found before. It is not clear what 
we should take for F,S and a more general relation relating A to Fh and Fl appears to 
be needed. 

The fact that the I = 2 parameters are attractive suggests the presence of d-wave 
pairing as was found for cerium. We note that for cerium A ,  --+ 0 as nf --+ 0 while here 
it remains approximately constant throughout the mixed-valence regime. It has been 
shown by Lavagna et a1 (1987) that if the long-range part of the Coulomb repulsion is 
also included then an extra term O(m/m*)  is introduced and as we move towards the 
mixed valence regime the superconducting transition disappears. The combination of 
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A ,  remaining approximately constant and m’/m remaining large throughout the mixed- 
valence regime means that this does not occur in the present case and superconductivity 
is possible for all nf between 2 and 3. 

At leading order in 1/N the particles interact via exchange of a single zero-frequency 
boson (charge fluctuations). It has been suggested by Houghton et a1 (1988) that an 
essential part of the physics is still missing. Spin fluctuations which are expected to 
play an important role are completely neglected when we work to this order. We need 
then to include terms to O(l/N)*. We follow the procedure used by Houghton et al 
(1988) and consider taking the large-co limit of the boson propagators. The only terms 
that survive are ( p p ) ,  ( p 7 )  and (77). If we do this we find the contribution to the vertex 
function to order 1/N2 is 

(5.10) 

In the two Kondo limits ( J o / N ) 2  = (V2/E0)*  which is precisely the result for cerium. 
In the middle of the valence regime 

r r 4  

The expressions for the scattering amplitudes are modified to give 

2 

-O.lOnfj(nf) +0.23N (%) E] 
N 

0.064nfj(nf) + 0.036N 

(5.1 1) 

(5.12) 

(5.13) 

The relative values of the first and second terms depends on the parameters we 
use. Certainly in the Kondo limits p-wave superconductivity is allowed and d-wave 
superconductivity is allowed throughout the mixed-valence regime. If we take W = 
8NA0/71 and N = 6 then as we approach the mixed-valence regime A ,  changes sign and 
p-wave superconductivity is not allowed. Other parameters can, however, be chosen 
which do not give this change of sign. For example with W = 16NAo/n and N = 4, 
p-wave superconductivity dominates even for nf - 2.5. In view of the approximations 
we have used our results are not likely to be very accurate and the situation in the 
mid-valence region is not clear. We note that experimentally it appears that the 
superconductivity is more likely to be p wave than d wave and our results do not 
contradict this. 

6. Conclusion 

We have considered the extension of the slave-boson method to the uranium heavy- 
fermion systems. Our main conclusion has been that despite the physical differences 
the properties of the uranium lattice throughout the mixed-valence regime are very 
similar to those for the cerium lattice in the Kondo limit, n f  -+ 1. Even for nf - 2.5 the 
energy scale, cf, remains small as has also been found using a variational technique 
for the one impurity problem (Yafet et al 1985, Nunes et a1 1985). The properties 
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of the uranium lattice are considerably more complicated than those for cerium and 
are described by four mean-field equations and sixteen boson propagators compared 
to two and four for cerium. We might expect, and do indeed find, very complicated 
expressions arising. When we take the Kondo limits, nf -+ 2 or 3, however, the results 
reduce to a form which is directly analogous to that for cerium as nf -+ 1. As we 
move into the mixed-valence regime we need to add only small corrections of the order 
(1/ In( W/Ef))-l to the Kondo-limit results. 

We note that when we are very close to the Kondo limit nf -+ I ,  we would expect the 
behaviour to be independent of the value of I ,  i.e. when fluctuations to the alternative 
valence state are greatly surpressed it should not matter whether that valence state is 
or is not magnetic. This is precisely what we find. The case of cerium is different to 
that of uranium as in the former case there is a crossover between two very different 
types of behaviour as we vary nf from 1 to 0, while for uranium the behaviour at the 
two ends of the permitted valence regime is identical. It is therefore not very surprising 
that the properties of uranium change less as we approach the mixed-valence regime 
than those of cerium. It is remarkable, though, that the properties in fact change so 
little. 

The ‘scaling’ relations which are observed experimentally for UPt, are shown to be 
a direct consequence of ‘Kondo lattice’-like behaviour. In particular we have calculated 
the Wilson ratio to leading and next leading order in 1/N and shown that this has a 
similar form to that for cerium and is independent of pressure. The resistivity is found 
to vary as A T 2  where A scales as y2. 

The energy- and frequency-dependent susceptibilities have been shown to have the 
same k-  and w-dependence as for cerium and the dynamic properties are just those 
of a Fermi liquid with enhanced electron mass. This can be compared to results for 
a single impurity using a variational technique to calculate xs(w) (Evans and Gehring 
1989). There it was found that the results for an impurity fluctuating between two 
magnetic valence states were qualitatively different to those for cerium. In particular 
two peaks were seen in ImXs(co) compared to only one for cerium, the second peak 
being a direct consequence of the fact that both valence states are magnetic. There is 
experimental evidence that the neutron spectrum for cerium is qualitatively different to 
that for thulium which can be thought of as fluctuating between f’ and f2, the thulium 
compound having an inelastic peak which is not present for cerium (Holland-Moritz 
1983). Although the variational calculation has not been explicitly performed for the 
thulium lattice we would expect the second peak to be found in this case also. It is 
unclear why the slave-boson method presented here, which is easily extended to the 
case of thulium, does not give this feature. 

Finally we have considered the superconducting instability. We show the importance 
of including terms of order 1/N2. In the two Kondo limits, nf -+ 2 or 3 we find that 
both p- and d-wave superconductivity are allowed and the p-wave terms dominate, 
as has been found for cerium as nf -+ 1. In the middle of the valence regime d-wave 
superconductivity is certainly possible. The sign of the p-wave interaction depends 
on the parameters used and it is difficult to make a firm conclusion. Nonetheless 
this is an important result. For the cerium compounds the superconducting instability 
is quickly lost as we move away from nf N 1 and there is no superconductivity in 
the mixed-valence regime. Experimentally this is confirmed by the fact that none 
of the mixed-valence cerium compounds have a superconducting ground state. The 
behaviour of cerium cannot help us deduce what we expect to find for uranium for 
nf - 2.5. Our results show that we in fact do still get a superconducting instability for 
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uranium throughout the mixed-valence regime but the symmetry of this depends on 
the parameters used. 
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